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Abstract

This paper describes discretization of transport equations on unstructured meshes with cell-centered colocated var-

iables. The problem of zig-zag pressure prediction is eliminated by introducing smoothing pressure correction derived by

Date [A.W. Date, Complete pressure correction algorithm for solution of incompressible Navier–Stokes equations on a

non-staggered grid, Numer. Heat Transfer, Part B 29 (1995) 441–458]. The finite-volume discretization is carried out in

a structured grid like manner by invoking a special line-structure to evaluate convective–diffusive transport across the

cell-faces.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There is considerable interest in solving transport

equations of flow and energy transfer on unstructured

meshes because of the suitability of the latter to map

complex domains. Unstructured meshes are formed by

connecting arbitrary distribution of points (called verti-

ces) within a given domain by non-intersecting lines. This

results in formation of polygonal elements (or, cells) in

2D domains and polyhedral elements in 3D domains.

To carry out finite-volume discretization, it is necessary

to define a node along with a control-volume (CV) sur-

rounding that node. Three approaches are possible:

In the Vertex-Centered approach, the vertices are

taken as nodes and a CV is specially constructed as
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shown in Fig. 1a for a 2D mesh. In this figure, the CV

is formed by joining centroids of successive elements sur-

rounding vertex P [7] but, other conventions are also

possible [13,12]. Note that the line joining P to its neigh-

bouring vertices will, in general, not be orthogonal to

the control-volume faces (shown by dotted lines). Also,

node P will not be at the centroid of the CV in general

but, the CV will always enclose the node.

The second, called the Circum-Centred approach, de-

fines nodes at the circumcentre of each cell (see Fig. 1b).

One advantage of this approach is that the cell-face

shared by two neighbouring elements will always be

orthogonal to the line joining the circumcentres which

are treated as nodes. However, a serious disadvantage

is that the circumcentre of each cell may, in general,

not lie within the cell. This is shown by node E in Fig. 1b.

The third, and the most popular approach, defines a

node at the centroid of each cell (see Fig. 1c) and the cell

itself is treated as the CV. In this Cell-Centred approach,
ed.
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Nomenclature

AP,AEk coefficients in discretized equations

Af cell-face area

bi1 geometric coefficients

C cell-face mass flow

d diffusion coefficient

D source term or diffusion coefficient

k thermal conductivity

Nk number of neighbouring cells of cell P

NVf number of vertices forming a cell-face

NVT number of vertices forming a cell

Pr Prandtl number

p pressure

R residual

S source term

t time

ui Velocity in xi-direction

Greek symbols

a under-relaxation factor for velocity

b under-relaxation factor for pressure or

blending factor

bi
1 geometric coefficients

l dynamic viscosity

x mass fraction

D incremental value

DV control volume

q density

U general variable

C exchange coefficient

r normal stress

ni local curvilinear coordinates at the cell-face

Suffixes

B refers to boundary node B

c refers to face-centroid

f refers to cell-face

k refers to cell-face k

m refers to mass conservation

n refers to cell-face normal

P,E refers to nodes P and E

sm refers to smoothing

t refers to turbulent

xi Refers to cartesian coordinates in i-direction

Superscripts

l iteration counter

o old Time

� multidimensional average
0 correction
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again the line joining neighbouring nodes, in general,

will not intersect orthogonally with the cell-face shared

by the neighbouring cells. In fact, in general, the point

of intersection may lie on an extension of the cell-face

rather than within it.

The above mentioned peculiarities of the unstructured

meshes confound analysts having familiarity mainly with

the structured (cartesian or curvilinear) grids. Further,

on unstructured meshes, the nodes are identified serially

through 1D arrays in an arbitrary manner and the famil-

iar (i, j) in 2D and (i, j,k) in 3D identification is not avail-

able. This confounds understanding further.
P

P

1c

c 3

c 4

c
2

c5

(a) (b)

Fig. 1. Typical unstructured grids. (a) Vertex-cent
In this paper, a discretization procedure within cell-

centred approach is described by invoking a specially

constructed line-structure so that those familiar with

the structured-grid approaches can readily understand

the main issues. Section 2 of the paper describes the

transport equations involving a specially derived pres-

sure-correction equation for colocated variables [5,8].

Section 3 describes the present discretization practice

mentioned above for 3D cells. In this section, departures

from practices of other researchers are mentioned. In

Section 4, the overall calculation procedure is presented.

Finally, conclusions are reported in Section 5. The dem-
P

E E

(c)

red, (b) circum-centred and (c) cell-centred.



Table 1

Generalized representation of transport equations
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onstration of validity of the present discretization prac-

tice is carried out in Part II [4].
U CU
eff SU

1 0 0

xk q(D + Dt) Rk

ui l + lt �op=oxi þ qBi þ Sui

h (k + kt)/Cpm Q
000

T (k + kt)/Cpm Q
000
/Cpm
2. Transport equations

Using tensor notation, the equations of mass,

momentum and energy transfer can be written by a sin-

gle equation for a general variable U. Thus,

oðqUÞ
ot

þ
oðqjÞ
oxj

¼ oðqUÞ
ot

þ divð~qÞ ¼ SU ð1Þ

where ~q ¼ ð~iq1 þ~jq2 þ~kq3Þ and

qj ¼ qujU � CU
eff

oU
oxj

ð2Þ

The meanings of Ceff and SU for each U are listed in

Table 1. Eq. (1) is called the transport equation for prop-

erty U. In turbulent flows, the effective exchange coeffi-
cient Ceff is replaced by l=PrU þ lt=Pr

/
t for each U

where suffix t denotes turbulent component. The turbu-

lent viscosity lt is determined by solving additional sca-
lar transport equations for variables characterizing

turbulence. Typically, equations for turbulent kinetic en-

ergy e and its dissipation rate � are solved [3] but, other
variants are also possible. The additional scalar trans-

port equations have the same form as Eq. (1).

When solutions to the above set of equations are

sought, an algorithm for determining the pressure distri-

bution must be devised. In the SIMPLE algorithm [1],

the pressure is determined via a pressure-correction

(p0m) equation that satisfies the mass-conservation equa-
tion (that is, for U = 1). On unstructured meshes, it is
most convenient to employ colocated variables so that

scalar and vector variables are defined at the same loca-

tion (or, node). For such a colocated (or, non-staggered)

arrangement, Date [5,6,8] has derived an equation for

total pressure-correction p 0 to eliminate the problem of

zig-zagness in the predicted pressure. 1 For compressible

flows, the equation has the following form

o0

oxi
Cp0 op

0

oxi
� U �

i

RT
p0

� �
¼ o

oxi
q�ui �

U �
i

RT
p0sm

� �
þ oq

ot
ð3Þ

where

p0 ¼ p0m þ p0sm ¼ p0m þ 1
2
ðp � �pÞ ð4Þ

U �
i ¼ �ui �

Cp0

q
op0sm
oxi

ð5Þ

Cp0 ¼ qaDV
APui ð6Þ
1 It may be noted that this method of removing zig-zagness

in pressure prediction is different from that used by [13,9–11].
In incompressible flows, U �
i ¼ 0. The meanings of Cp0

and �ui will become clear in a later section. In Eq. (4), the
evaluation of smoothing pressure-correction p0sm requires
evaluation of the space-averaged pressure �p. Sclichting
[15] and Warsi [16] define this averaged pressure as

one-third the negative sum of normal stresses (rxi). Date
[8,5]. however, has shown that this average pressure can

be expressed as

�p ¼ � 1
3
ðrx1 þ rx2 þ rx3Þ ¼

1

3
ð�px1 þ �px2 þ �px3Þ ð7Þ

where �pxi are independent solutions to o
2p=ox2i ¼ 0.
3. Discretization

3.1. Gauss theorem

In the finite-volume formulation, Eq. (1) is first inte-

grated over a cell-volume DV surrounding typical node
P (see Fig. 2) so that

ðqPUP � qoPU
o
P Þ

DV
Dt

þ
Z

DV
div~qdV ¼ SU DV ð8Þ

The node P is defined at the centroid of the cell and

its coordinates are given by

xi;P ¼
PNVT

n¼1 xi;n
NVT

ð9Þ

where NVT are the number of vertices (4 for a tetrahe-

dral cell and 8 for a hexahedral cell). The coordinates of

vertices xi,n are known from the unstructured grid gener-

ator such as ANSYS. Now, to evaluate the volume inte-

gral in Eq. (8), Gauss�s theorem is invoked. Thus,Z
DV
div~qdV ¼

Z
Af

~q �~Af ð10Þ

where
R
Af
is the surface integral and Af is the surface

area. The integral is now replaced by a summation.Z
Af

~q �~Af ¼
XNk
k¼1

ð~q �~AfÞk ð11Þ

where Nk represent the number of plane surfaces (or, the

cell-faces) enclosing the cell-volume DV. For a tetrahe-
dral cell, Nk = 4 and for a hexahedral cell, Nk = 6.
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Fig. 2. Typical neighbouring cells P and E. (a) Tetrahedral cell and (b) hexahedral cell.
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3.2. Cell-face area

To determine area of the kth cell-face, consider the

triangular cell-face (a* � b* � c*) of a tetrahedral cell

shown in Fig. 2a. Then,

Af ;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� la�b� Þðs� lb�c� Þðs� la�c� Þ

p
s ¼ ðla�b� þ lb�c� þ la�c� Þ

2
ð12Þ

where lengths l can be determined from the known coor-

dinates of the vertices. For hexahedral cells, the quadri-

lateral cell-face (a* � b* � c* � d*) is split into two

triangles and Eq. (12) is again applied to determine the

total area. This procedure can be applied to any polyg-

onal cell-face by splitting the polygon into appropriate

number of non-overlapping triangles.
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Fig. 3. Cell-face normal. (a) Tetrahed
3.3. Unit normal vector ~n

The area vector is given by~Afk ¼ Afk~n where is~n is the
unit outward normal to the cell-face. To evaluate this

vector, let the line joining neighbouring nodes P and E

be in n1 direction (see Fig. 3) and let n2 and n3 coincide
with any two adjoining sides of the face-polygon. In

Fig. 3, the two chosen sides merge at c*. However, the

choice of c* is arbitrary. Now, the correct directions of

n2 and n3 are determined such that coordinate system
(n1,n2,n3) obeys the right-hand-screw rule. This obedi-
ence is observed as shown below.

Let the unit normal vector be given by

~n ¼~ib11 þ~ib21 þ~jb31 ¼
~kb11 þ~jb21 þ~kb31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb11Þ

2 þ ðb21Þ
2 þ ðb31Þ

2
q ð13Þ
c

E

n

*
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e
ξ

ξ
ξ
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ral cell and (b) hexahedral cell.
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Fig. 4. Construction of a line-structure.
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where

b11 ¼
ox2
on2

ox3
on3

� ox3
on2

ox2
on3

b21 ¼
ox3
on2

ox1
on3

� ox1
on2

ox3
on3

b31 ¼
ox1
on2

ox2
on3

� ox2
on2

ox1
on3

ð14Þ

Now, the correctness of directions n2 and n3 is
ensured by requiring that the Jacobian J is positive.

Thus,

J ¼~a1 �~n ¼ b11
ox1
on1

þ b21
ox2
on1

þ b31
ox3
on1


 �
> 0 ð15Þ

where~a1 is the base-vector tangent to coordinate line n1.
It is now a straightforward matter to determine coeffi-

cients of normal vector bi1 and bi
1 once-for-all at every

face of every cell.

3.4. Convective–diffusive transport

Making use of Eqs. (11)–(13), the total transport for

the kth face can be written as

ð~q �~AfÞk ¼ ð~q �~nÞkAfk ¼
X3
i¼1

ðbi1qiÞkAfk ¼ qnkAfk ð16Þ

The normal flux qnk is now assumed to be uniform

over the cell-face area and explicitly evaluated at the

centroid c of the cell-face (see Fig. 3). The coordinates

of this centroid are

xic ¼
PNVf

n¼1 xi;n
NVf

ð17Þ

where NVf represents total number of vertices forming

the kth cell-face. Thus, substituting Eq. (2) in Eq. (16),

it can be shown that

ð~q �~AfÞk ¼ ð~q �~nÞckAfk

¼ qckAfkUck

X3
i¼1

ðbi1uiÞck

� CckAfk
X3
i¼1

bi1
oU
oxi

� �
ck

ð18Þ

For brevity, we now introduce following notations

Cck ¼ qckAfk
X3
i¼1

ðbi1uiÞck face massflow ð19Þ

oU
on

����
ck

¼
X3
i¼1

bi1
oU
oxi

� �
ck

face� normal gradient ð20Þ

where n is along the face-normal. Substituting Eqs. (19)

and (20) in Eq. (18), therefore,
ð~q �~AfÞk ¼ CckUck � CckAfk
oU
on

����
ck

ð21Þ

In the above expression, the first term on the right-

hand side represents convective transport whereas the

second term represents diffusive transport normal to

the kth cell-face. The replacement indicated in Eq. (20)

may be viewed as a special feature of the present discre-

tization practice because the normal diffusion is sought

to be evaluated directly rather than through its resolved

components along xi or ni. Most previous researchers
[9,11,10], it would appear, evaluate the normal diffusion

through resolved components.

3.5. Construction of line-structure

Direct evaluation of face-normal transport requires

deliberate construction of a line-structure at a cell-face.

Existence of such a line-structure, however, is not obvi-

ous. The construction can be understood by considering

triangular cell-face (a*b*c*) of a tetrahedral cell-face

shown in Fig. 4. In this figure, P and E are nodes strad-

dling the cell-face. Line PE intersects the face at e. In

general, e will not coincide with the face-centroid c. In

fact, e may not even lie within the cell-face in general

but may lie on an extension of the face-plane. However,

this matter is inconsequential to further development.

The construction of the required line-structure begins

by drawing two cell-face-normals through points c and

e. Now, imagine a plane parallel to the cell-face passing

through P. This plane will intersect the face-normal

through c at P2 and that through e at P1. Triangle

P � P1 � P2 will thus be parallel to the cell-face and

the intersections at P1 and P2 will be orthogonal. Also,

line P1P2 will be parallel to the line ce. A similar face-

parallel plane passing through E will yield face-parallel

triangle E � E1 � E2.

It is now obvious that the face-normal transport in

Eq. (21) must be evaluated along line P2 � c � E2. This

evaluation will now be analogous to that carried out at

the cell-face of a structured grid.
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3.6. Discretized convection

Following the structured grid practice, the convective

transport in Eq. (21) is evaluated as

CckUck ¼ Cck fcUP2 þ ð1� fcÞUE2½ 
k ð22Þ

where fck is a weighting factor that depends on the con-

vection scheme used [2] and Cck is evaluated from Eq.

(19) as

Cck ¼ qckAfkðb11u1 þ b21u2 þ b31u3Þck ð23Þ

In the above evaluation, density and velocity compo-

nents are evaluated by multidimensional averaging

according to the following general formula

Wck ¼
1

2
fmcWE2 þ ð1� fmcÞWP 2½ 
k þ

Wck

2
ð24Þ

where

wck ¼
PNVf

n¼1wn

NVf
ð25Þ

and, from our construction,

fmc ¼
lP 2c
lP2E2

¼ lP1e
lP 1E1

¼ lPe
lPE

ð26Þ

where lPe and lPE are evaluated from known coordinates

of points P, e and E. In this paper, the weighting factor

fck is evaluated by blending [11] of central-difference

(CDS) and upwind-difference (UDS) schemes so that

fck ¼ bð1� fmcÞ þ
1

2
ð1� bÞ 1þ j Cck j

Cck


 �
ð27Þ

where b is the blending factor, b = 1 corresponds to
CDS whereas b = 0 corresponds to UDS.
In compressible flows, nearly discontinuous varia-

tions of U may occur in the presence of a shock. In such
cases, it becomes important to sense the shape of the lo-

cal U-profile via total variation diminishing (TVD)

schemes. The convective-transport is then represented

by [6]

CckUck ¼ 0:5�ðCckþ j Cck jÞðf þUE2 þ ð1� f þÞUW 2Þ
þ 0:5�ðCck� j Cck jÞðf �UP2 þ ð1� f �ÞUEE2Þ

ð28Þ
where

f þ ¼ F
UP2 � UW 2

UE2 � UW 2

� �
f � ¼ F

UE2 � UEE2

UP2 � UEE2

� �

PointsW2 and EE2, however, must be defined. With

reference to our construction (see Fig. 4), the point W2

is defined to the west of P2 such that lW2P2 = lP2c. Simi-

larly, EE2 is defined to the east of E2 such that lcE2 =

lE2EE2. Both W2 and EE2 lie on the face-normal P2-c-

E2. Finally, the profile-shape-sensing function F[ ]

can take variety of forms in different TVD schemes

[14].
3.7. Discretized diffusion

For evaluating diffusion transport in Eq. (21), Cck
can be evaluated from Eq. (24) or, one may use har-

monic mean of values at P2 and E2 [2]. Now, since point

c may in general not be midway between points P2 and

E2, using Taylor series expansion, the expression for sec-

ond-order accurate face-normal gradient will read as

oU
on

����
c

¼ UE2 � UP2

lP2E2

�
ð1� 2fm;cÞ
fm;cð1� fm;cÞ

fm;cUE2 � Uc þ ð1� fm;cÞUP2

lP2E2

� �
ð29Þ

where, from our construction,

lP2E2 ¼ lP 1E1 ¼~lPE �~n ¼
X3
i¼1

bi1ðxi;E � xi;P Þ
�����

����� ð30Þ

Therefore, the total diffusion transport in Eq. (21)

can be expressed as

�CckAfk
oU
on

����
ck

¼ �dckðUE2 � UP2Þk

þ dckBck fm;cUE2 � Uc þ ð1� fm;cÞUP2


 �
k

ð31Þ

dck ¼
CckAfk
lP2E2

ð32Þ

and

Bck ¼
ð1� 2f m;cÞ
fm;cð1� fm;cÞ

ð33Þ

Note that dck is the familiar diffusion coefficient

having significance of conductance. Symbol Bck is

introduced for brevity. Note that a Peclet number

at the cell-face can be defined as Pck = Cck/dck. Thus,

the weighting factor fck in Eq. (27) can also be sensitised

to Pck as required in hybrid or power-law schemes.

3.8. Interim discretization

Using above developments (Eqs. (21)–(33)), Eq. (8)

can be written as

ðqPUP � qoPU
o
P Þ

DV
Dt

þ
XNk
k¼1

Cck fcUP2 þ ð1� fcÞUE2½ 
k

�
XNk
k¼1

dckðUE2 � UP2Þk þ
XNk
k¼1

dckBck fm;cUE2 � Uc



þð1� fm;cÞUP2 
k ¼ SDV ð34Þ

In the above discretized equation, values of variables

at fictitious points P2 and E2 and at vertices a*, b*, c*

are not known. These unknown values will now be ex-

pressed in terms of values at nodes P and E.
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3.9. Interpolation of U at P2, E2, a*, b*, c*

It is now assumed that variation of U in the neigh-

bourhood of nodes P and E is multidimensionally linear.

Then, UP 2 , for example, can be evaluated as

UP2 ¼ UP þ DUP ð35Þ

where

DUP ¼~lPP 2 � gradUP ¼
X3
i¼1

ðxi;P2 � xi;P Þ
oU
oxi

����
P

ð36Þ

Now, ðxi;P2 � xi;P Þ is evaluated in terms of points
whose coordinates are known. Thus, let

xi;P2 � xi;P ¼ ðxi;P2 � xi;cÞ þ ðxi;c � xi;P Þ ð37Þ

But, from our construction, xi;P2 � xi;c ¼ xi;P1 � xi;e.
Therefore, Eq. (37) is re-written as

xi;P2 � xi;P ¼ ðxi;P1 � xi;eÞ þ ðxi;e � xi;P Þ þ ðxi;c � xi;eÞ ð38Þ

But, the equation to the face-normal passing through

e is given by

~n ¼
~iðx1;e � x1;P1 Þ þ~jðx2;e � x2;P1Þ þ~kðx3;e � x3;P1Þ

lP1e

¼~ib11 þ~jb21 þ~kb31 ð39Þ

Therefore, it follows that

xi;P1 � xi;e ¼ �lP1eb
i
1 ð40Þ

Substituting the above equation in Eq. (38), therefore

xi;P2 � xi;P ¼ lxi þ dxi ð41Þ

where

lxi ¼ xi;e � xi;P � lP 1eb
i
1

dxi ¼ xi;c � xi;e
ð42Þ

and

lP1e ¼~lPe:~n ¼
X3
i¼1

ðxi;e � xi;P Þbi1

�����
����� ð43Þ

From the above developments, it follows that

UP2 ¼ UP þ DUP ¼ UP þ
X3
i¼1

ðlxi þ dxiÞ
oU
oxi

����
P

ð44Þ

Invoking similar arguments, it can be shown that

UE2 ¼ UE þ DUE

¼ UE þ
X3
i¼1

dxi �
ð1� fmcÞ

fmc
lxi


 �
oU
oxi

����
E

ð45Þ

When TVD scheme is used, the values of UW2 and

UEE2 are evaluated in analogous manner. Finally, value

of U at each vertex of a cell-face is evaluated as average
of two estimates. Thus, at vertex a*, for example,
Ua� ¼
1

2
UP þ~lPa� � gradUP þ UE þ~lEa� � gradUE

h i
ð46Þ

Similar estimates at other vertices enable calculation

of Uc.
3.10. Final discretization

Thus, using derivation of the previous sub-section,

Eq. (34) can be written as

ðqPUP � qoPU
o
P Þ

DV
Dt

þ
XNk
k¼1

Cck ½fcUP þ ð1� fcÞUE
k

�
XNk
k¼1

dckðUE � UP Þk ¼ SDV þ
XNk
k¼1

Dk ð47Þ

where

Dk ¼ �dckbck ½fmcðUE þ DUEÞ � Uc þ ð1� fmcÞ
� ðUP þ DUP Þ
k þ dckðDUE � DUP Þk
� Cck ½fcDUP þ ð1� fcÞDUE
k ð48Þ
3.10.1. Further simplification

Grouping terms in UP, Eq. (47) is now re-written as

APUP ¼
XNk
k¼1

AEkUE;k þ SDV þ
qom;P DV

Dt
Uo

P þ
XNk
k¼1

Dk

ð49Þ

where

AEk ¼ dck � ð1� fckÞCck ð50Þ

AP ¼ qP DV
Dt

þ
X3
i¼1

½Cckfck þ dck 
 ð51Þ

Now, for U = 1 (that is, mass conservation), Eq. (34)
gives

ðqP � qoP Þ
DV
Dt

þ
XNk
k¼1

Cck ¼ 0 ð52Þ

Replacing qPDV/Dt in Eq. (51) via the above equa-
tion, it follows that

AP ¼ qoP
DV
Dt

þ
XNk
k¼1

AEk ð53Þ

With the above expression for AP, Eq. (49) suitable

for computer implementation in an iterative procedure

reads as

APUlþ1
P ¼

XNk
k¼1

AEkU
lþ1
E;k þ Sl DV þ qoP DV

Dt
Uo

P þ
XNk
k¼1

Dl
k

ð54Þ
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where superscript l denotes iteration counter. The

equation shows that S and Dk terms lag behind U values
by one iteration. Eq. (54) is the main discretized trans-

port equation for node P. The equation is valid for

cells of any topology as well as any polygonal plane

cell-face.

P

a*

2

t
t2

1

Fig. 5. Typical near-boundary cell.
3.11. Evaluation of cartesian gradients

The evaluation of Dk terms requires evaluations of

DUP and DUE (see Eq. (48)). The latter terms, in turn,

require evaluations of cartesian gradients (see Eqs. (44)

and (45)) at nodal positions P. This evaluation is carried

out as follows

oU
oxi

����
P

¼ oU
oxi

����
P

¼ 1

DV

Z
DV

oU
oxi

����
P

dV

¼ 1

DV

Z
Af

ðbi1UÞdAf ¼
1

DV

XNk
k¼1

ðbi1UÞckAfk ð55Þ

where Uck is evaluated from Eq. (24) which again re-

quires DUP and DUE to complete evaluations of UP2

and UE2 This makes Eq. (55) implicit in oU/oxijP. How-
ever, since the overall procedure is iterative, such implic-

itness is acceptable.
3.12. Boundary conditions

Consider a cell near a domain boundary (Fig. 5) with

the cell-face coinciding with the boundary. A boundary

node B is now defined at the centroid of the cell-face

(a*,b*,c*) so that with our usual notation B = c = e

and coordinates of B can be readily evaluated from

those of face-vertices. 2 Now, let P2B be the outward

normal to the boundary face and PP2 be orthogonal

to P2B and, therefore, parallel to the boundary face.

Then, the total outward transport through the boundary

face is given by

ð~q �~AfÞB ¼ CBUB � ðCAfÞB
oU
on

����
B

ð56Þ

where

CB ¼ qBAf ;B
X3
i¼1

bi1ui;B ð57Þ

CBUB ¼ CB½fBUP2 þ ð1� fBÞUB
 ð58Þ

oU
on

����
B

¼ ðUB � UP2 Þ
lP2B

¼ ðUB � UP � DUP Þ
lP2B

ð59Þ
2 Note that points B, c and e will now coincide. Similarly

points P2 and P1 will also coincide for the boundary face.
Therefore, Eq. (56) can be written as

ð~q �~AfÞ ¼ CB½fBðUP þ DUP Þ þ ð1� fBÞUB

� dB½UB � UP � DUP 
 ð60Þ

where dB ¼ CBAfB=lP2B.

3.12.1. Scalar variables

For the near-boundary cell, Eq. (54) is written as

APUlþ1
P ¼

XNk-B
k¼1

AEkU
lþ1
E;k þ Sl DV þ

qom;P DV

Dt
Uo

P

þ
XNk�B

k¼1
Dl

k � ð~q �~AfÞB ð61Þ

where Nk-B implies that boundary-face contribution is

excluded from the summation (the same applies to the

AP coefficient, Eq. (53)) and accounted through––

ð~q �~AfÞB term. For a scalar variable, UB or influx

FB = CBoU/onjB are typically specified. In either case,
employing Eq. (60) and source-term linearization prac-

tice [2], Eq. (61) can be appropriately modified.

3.12.2. Vector variables

At inflow and wall boundaries, the velocities Ui,B are

known and, therefore, Eq. (61) readily applies. Care,

however, is needed when exit and symmetry boundaries

are specified. Thus,

At symmetry boundary

Un;B ¼ 0 and oUt=onjB ¼ 0

At exit boundary

oUn=onjB ¼ 0 and oUt=onjB ¼ 0
where Un andUt are face-normal and face-tangent veloc-

ities. Thus,

Un ¼ ~V �~n ¼
X3
i¼1

bi1ui ð62Þ

Now, to evaluate the face-tangent velocities, we con-

struct an orthogonal coordinate system ð~n;~t1;~t2Þ where
~t1 and~t2 are two tangent vectors parallel to the bound-
ary-face. One of these (say,~t1) can be taken along line
PP2. The second one ~t2 will now be orthogonal to ~t1
and ~n. Thus, from Eq. (41) (with dxi = 0 because B, c

and e coincide)
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Fig. 6. Control volume at the cell-face.

3 Note that, in general, if the parent, cell-face were n-

polygon, DVck will be an n-polygonal cylinder having (n + 2)

faces.
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~t1 ¼~ilx1 þ~jlx2 þ~klx3 ð63Þ

and

~t2 ¼~n�~t1 ¼~imx1 þ~jmx2 þ~kmx3 ð64Þ

where mx1 ¼ b21lx3 � b31lx2, mx2 ¼ b31lx1 � b11lx3, mx3 ¼
b11lx2 � b21x1. It is now a straight forward matter to

implement the symmetry boundary condition, for exam-

ple, via the following three equations.

Symmetry boundary

Un;B ¼
X3
i¼1

bi1ui;B ¼ 0 ð65Þ

oUt1

on

����
B

¼ 0 Ut1 ;B ¼ Ut1 ;P2

X3
i¼1

lxiui;B ¼
X3
i¼1

lxiui;P2 ¼
X3
i¼1

lx1ðui;P þ Dui;P Þ
ð66Þ

oUt2

on

����
B

¼ 0 Ut1 ;B ¼ Ut1 ;P2

X3
i¼1

mxiui;B ¼
X3
i¼1

mxiui;P 2 ¼
X3
i¼1

mxiðui;P þ Dui;P Þ
ð67Þ

The above three equations can be solved simultane-

ously to obtain three boundary velocities ui,B. Similarly,

to implement the exit boundary condition, only Eq. (65)

needs to be modified to read as

Exit boundary

oUn

on

����
B

¼ 0 Un;B ¼ Un;P2

X3
i¼1

bi1ui;B ¼
X3
i¼1

bi1ui;P2 ¼
X3
i¼1

bi1ðui;P þ Dui;P Þ
ð68Þ
3.13. Pressure-correction equation

For simplicity, a discretized version of the incom-

pressible form (U �
i ¼ 0) of the pressure-correction Eq.

(3) is given below.

APp0P ¼
XNk
k¼1

AEkp0E;k �
XNk
i¼1

Cl
ck � ðqP � qoP Þ

DV
Dt

þ
XNk�B

k¼1
Dp0

k ð69Þ

where AP ¼
PNk

k¼1AEk and, from Eq. (6)

AEk ¼
Cp0

ckAfk
lP2E2

¼ ql
maDV
APui

� �
ck

Afk
lP2E2

ð70Þ

The Dp0

k term contains gradients of p
0. However, dur-

ing iterative process in SIMPLE, the pressure-correction

equation is treated only as an estimator of p 0. Hence, Dp0

k

may be set to zero. Further, evaluation of AEk requires

evaluations of APui
ck and DVck. The former is evaluated

by harmonic mean [5] but the evaluation of the latter re-

quires construction of another line-structure at the cell-

face. This construction is shown in Fig. 6 for a triangular

cell-face of a tetrahedral cell.

The construction involves drawing triangles

(a*1,b*1,c*1) at P2 and (a*2,b*2,c*2) at E2 such that

the planes of these triangles are parallel to the parent

cell-face (a*,b*,c*). Joining vertices of these triangles

completes construction of cell-face control-volume

DVck. Thus,
3
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DV ck ¼ AfklP2E2 ð71Þ

and, from Eq. (70),

AEk ¼
ql
m;ckaA

2
fk

APui
ck

ð72Þ

Eq. (69) is solved with boundary condition op 0/

onjB = 0. If the boundary pressure is specified then

p0B ¼ 0. After solving Eq. (69), the mass-conserving pres-
sure-correction distribution is recovered from Eq. (4)

[5,6,8]. This, however, requires evaluation of smoothing

pressure-correction p0sm and, hence, of
�pl.

Evaluation of �pl

As shown in Eq. (7), we need to evaluate �plxi as solu-
tions o2p=ox2i jP . Thus,

1

DV

Z
DV

o2p
ox2i

����
P

dV ¼ 1

DV

XNk
k¼1

bi1Af

 �

k

opl

oxi

����
ck

¼ 0 ð73Þ

Now, to evaluate the cell-face pressure-gradient op1/

oxijck, Gauss-theorem is applied to DVck. The resulting
algebra is somewhat lengthy and, therefore, only the

final result for triangular cell-face is given below.

�pxl;P ¼
PNk

k¼1ðA1l � A2l þ A3lÞPNk
k¼1A4l

l;m; n cyclic ð74Þ

where

A1l ¼
ðbl1AfkÞ

2

DV ck
ðpE þ DpE � DpP Þk ð75Þ

A2l ¼
bl1b

m
1

2
½pa� ðxn;c� � xn;b� Þ þ pb� ðxn;a� � xn;c� Þ

þ pc� ðxn;b� � xn;a� Þ
 ð76Þ

A3l ¼
bl1b

n
1

2
½pa� ðxm;c� � xm;b� Þ þ pb� ðxm;a� � xm;c� Þ

þ pc� ðxm;b� � xm;a� Þ
 ð77Þ

A4l ¼
ðbl1AfkÞ

2

DV ck
ð78Þ

where, the pressures at the cell-face vertices are evalu-

ated in the manner of Eq. (46).
ð81Þ
4. Overall calculation procedure

The overall SIMPLE procedure for colocated grids is

as follows:

Preliminaries

1. For the domain of interest, generate unstructured

mesh using mesh-generator such as ANSYS. The

mesh generator provides two files:
(a) Vertex file in which all vertices are serially num-

bered along with the coordinates xi of each vertex.

(b) Element file in which elements (or nodes) are seri-

ally numbered along with the number identifica-

tions of vertices forming the element.
2. Using the information in the above two files, iden-

tify neighbouring nodes of each node N. This iden-

tification is easily carried out because the

neighbouring nodes must share the same cell-face

and hence, the same vertex numbers. If no shared

cell-face is identified then the cell-face must be the

boundary face. Hence, define a boundary node

and assign a node number to it. For each node N,

store the node number of neighbouring node in an

array NABOR (N,K) where K is the kth cell-face.

3. Now, carry out identification of n2 and n3 directions
as indicated in Section 3.3 at each cell-face of every

cell.

4. With the above information at hand, it is now easy

to evaluate bi1, lxi, dxi, fmck and Afk once-for-all.

Also, evaluate cell-volume.
n Begins
5. At a given time step, guess pressure field pl.

6. Solve once Eq. (54) for U = ui to yield uli distribu-
tion. The solution is preceded by evaluation of coef-

ficients AEk and by accounting for boundary�
conditions.

7. Perform maximum 10 iterations of p 0 Eq. (69)

where AEk are evaluated from Eq. (72).

8. Recover mass-conserving pressure-correction p0m
according to Eq. (4) by evaluating p0sm. The
latter requires evaluation of pl. This average pres-
sure is evaluated from Eq. (7) where plxi are evalu-
ated using Eq. (74). This step ensures that the

predicted pressures do not exhibit zig-zag behaviour

[8].

9. Apply pressure and velocity corrections at each

node. Thus
plþ1P ¼ plP þ bp0m;P 0 < b < 1 ð79Þ

ulþ1i;P ¼ uli;P �
aDV
APui

op0m
oxi

����
P

ð80Þ
where a is the under-relaxation factor used in

momentum equations.

10. Solve Eq. (54) for all other relevant scalar U�s.
11. Evaluate residuals from imbalance in Eq. (54) for

all U�s according to
RU ¼
X
all nodes

APUP �
X
k

AEkUEk � SU
total

( )2
2
4

3
5
0:5
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The mass residual is evaluated as

Rm ¼
X
all nodes

APp0m;P �
X
k

AEkp0m;Ek

( )2
2
4

3
5
0:5

ð82Þ
where the coefficients AP and AEk are taken from

(69). This practice for evaluation of Rm is special

to the present procedure. The reasons are explained

in [5,8].

12. If convergence criterion is not satisfied, treat

pl+1 = pl and Ul+1 = Ul and return to step 6.

13. To execute the next time step, set all Uo = Ul+1 and

return to step 5.
5. Conclusions

(1) In this paper, procedure for discretization of

three-dimensional transport equations on unstructured

meshes is described. The procedure is applicable to cells

of any topology provided the cell-faces are plane

surfaces.

(2) The discretization is carried out by constructing a

special line structure so that evaluations at the cell-faces

can be carried out in structured-grid-like manner.

(3) The paper presents implementation aspects of

smoothing pressure-correction on unstructured meshes

using cell-centered discretization.
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